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LE'ITER TO THE EDITOR 

Discordance between quantum and classical correlation 
moments for chaotic systems 

J M Robbins and M V Berry 
H H Wills Physics Laboratay, University of Bristol, Tyndall Avenue, Bristol BSS ITL, UK 

Received 8 May 1992 

Abstract. For systems whose classical orbits are chaotic, a set of quantum expectation 
values Q, is constructed which vanish far all h, unlike their classical counterparts C, which 
are finite. This behaviour is not paradoxical because Q, and C, are moments of time 
correlation functions, which arc dominattd hy the long-time limit where quantum and 
classical evolutions disagree. 

According to the correspondence principle, quantum observables (expectations of 
Hermitian operators) should tend to their classical counterparts in  the semiclassical 
limit, i.e. as Planck's constant h + 0. However, the semiclassical limit is highly singular 
(Berry 1991), and is vulnerable to disruption by any other limit with which it does not 
commute. An example is the longtime limit I + m. In the combined semiclassical 
long-time limit, the correspondence principle need not apply, and very complicated 
behaviour can occur (see e.g. Berry 1988). 

Here we give an example where the quantum-classical clash is extreme: the quantum 
observable is zero independently of h, while if the orbits are chaotic its classical limit 
does not vanish. A related result was given by Kosloff and Rice (1980), who argued 
that the quantum mechanical value of a suitably defined Kolmogorov entropy vanishes, 
whereas the classical value does not. Another example has been presented by Ford et 
a/ (1991); they showed that the algorithmic complexity of computations for the quantum 
Arnold cat map always vanishes, while the classical complexity, reflecting the chaotic 
evolution, does not (of course, complexity is not the expectation of a Hermitian operator 
and so is not a quantum observable in any obvious way). In both the above examples, 
as with ours, the apparent breakdown of correspondence originates in the fact that 
the development of chaos involves the iong-time limit. The example we give here has 
the virtue that the transcription from quantum to classical is particularly straight- 
forward ." 

Let A and 2 be Hermitian operators that depend on the fundamental coordinate 
and momentum operators i, fi  cor a bound system whose evolution is governed by a 
time-independent Hamiltonian H. Then we can define the quantum correlation function 

O(t)..i(nl(A,B-AB,+~A, - B,A)ln). (1) 

A, =exp{ifit/h}A exp{-ifit/fi) (2) 

This involves the nth eigenstate In) of fi, and the Heisenberg (time-evolved) operators 
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and similarly for i,. Q( t )  is real because the operator in parentheses in (1) is Hermitian. 
The correlation moments, with which we will be concerned, are 

m 

Q,=]--dtt'Q(t). (3)  

Elementary arguments (involving independence of expectation value to a shift in 
the time at which Heisenberg operators are evaluated) show that Q ( f )  is an odd 
function, so that all the even moments are zero. Now we show that the Q, also vanish 
when r is odd. After introducing the resolution of the identity to separate the operators 
in (l) ,  and the frequencies 

where E. are the energy levels (discrete eigenvalues of I?), an elementary calculation 
gives 

~ ( t )  = - 2 ~  sin{o.,t} Im{(nlAlm)(mliln)}. ( 5 )  
m 

Thus Q( t )  is an almost-periodic function. That its moments vanish can be seen by 
expressing them as derivatives of the Fourier transform of Qirj at <ne origin, and 
observing that ( 5 )  has no Fourier component at o = 0. Alternatively, we can use 

d t t '  sin{wt} = O  w > 0, r odd 

whose truth can be established by a variety of arguments, for example expressing the 
integral as a derivative of a delta-function of o, or introducing a convergence factor 
exp{-et} and taking the limit E + 0. 

Let the classical counterpart of the quantum system have N (22)  freedoms, and let 

(7) 

denote pos$on inthe 2N-dimensional phase space. Then corresponding to the quantum 
Operators A and B are ciassicai funciions A(tj  arid i3jrj. Tie corresponding dassicai 
Hamiltonian H ( z )  generates from the initial point z the orbit Z , ( z )  in time 1, and the 
classical counterpart of the time-evolved operator (2) is 

zE ( % P ) = ( q 1 , .  , , , q N , P I , .  ' .  . P N )  

Ar(z)Z A(Zt(z)). (8) 

To define the classical counterpart of the correlation function (1) we need to know ... L-6 -----"--- A - . - . L  I A-.:,. _..- t . . e : - + h ~ ~ + - + a l . . \  Th:-:sn..hmoe orn^- WII'lL ~ u L L G D p u L L " D  L U  LUG qu'l."rurrr G*pGGL'l,lu,, "'a,"S 111 L L l r  D l U L C  ,U,. 1 L l l D  13 a p"1a"b""pacC 

average over whatever classical invariant manifold corresponds to In). By assumption, 
the classical systems we are considering are chaotic, so almost all orbits are ergodic 
on their energy surfaces. Thus the appropriate average is microcanonical, and the 
classical correlation function is 

C( t )= (A ,B-B ,A) ,  

Of course this function is independent of h. (There are also semiclassical 'scar' 
contributions to Q(t) from each of the classical periodic orbits, but these are of order 
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h N - '  exp{i/h} (Berry 1991) and vanish in the classical limit, as the oscillations become 
infinitely fast and faint.) The classical correlation moments are 

m 

C,-(_mdff'C(f). (10) 

Again, elementary arguments (involving conservation of H and the fact that time 
evolution is a canonical transformation) show that C ( t )  is an odd function, so that 
all the even moments vanish. But the odd moments need not vanish. To see why, we 
observe that the mixing property associated with chaos means that 

C ( f ) -  ,+m ( A ) E ( B ) E  - ( B ) E ( A ) E  = O  (11) 

so that C (  I) rises from zero at f = 0 and then decays to zero at infinity. Provided the 
decay is sufficiently fast, C ( f )  has a continuous spectrum, and so is not an almost- 
periodic function. Therefore it can possess some non-zero moments, and typically will 
do  so. 

We can prove this for hyperbolic systems, for which it is known (Pollicott 1985, 
Ruelle 1986) that c ( w ) ,  the Fourier transform of C(I) ,  is meromorphic in a strip 
including the real axis. But if all the moments of C ( t )  are to vanish, then all derivatives 
of e(,) must vanish at w = O ;  by analytic continuation this implies that c . ( w ) ,  and 
hence C ( t ) ,  vanish identically. Thus any non-zero C ( t )  must have non-zero moments. 

We are unable to generalize this argument to arbitrary classical chaotic systems, 
because not enough is known about the analytic structure oftheir correlations. Therefore 
we cannot exclude cases such as 

m 

C ( o ) = ~ ~ ~ d t C ( t ) e x p { i w r } = i w  exp 

where, because of the essential singularity, all derivatives at w = 0, and therefore all 
moments of C ( t ) ,  are zero. Moreover, C ( f ) ,  in addition to having a continuous 
spectrum, decays exponentially. This can be seen by Fourier inversion, which gives 

1 1  
C ( f ) = - - c 1 m z K 2 W  (= J1-IA exp{i?r/4} = JA+il (13) 

where K denotes the modified Bessel function (Abramowitz and Stegun 1964), whose 
limiting forms are 

L 7, 5 

We consider such cases as special, and unlikely to occur in any real classical system. 
If the classical motion is integrable, the above arguments do  not apply. For then 

the motion is almost periodic (indeed multiply periodic, since there are finitely many 
independent frequencies), and the quantum expectation value corresponds to averaging 
over the angles of the quantized invariant torus whose actions are associated with In) 
(see e.g. Percival 1977). C ( f )  is given by  a formula similar to (9, in which the on, 
are replaced by (non-zero) integer linear combinations of the N classical frequencies. 
It then follows from (6) that the moments are zero. 
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It seems paradoxical that a quantum expectation value can have zero moments 
while the moments of its classical limit are finite. But the moments we are calculating 
are constructed to exploit the clash of limits h + 0, f + 00, because they are dominated 
by the behaviour of Q ( t )  and C( t )  at large t-precisely where the classical and quantum 
evolutions disagree. Specifically, for long times t >  h/(mean level spacing) - 1/hcN-') ,  
Q ( f )  is dominated by oscillations associated with the discreteness of the spectrum, 
while C ( t )  decays because of the mixing associated with chaos. The essence of 
quantization is here incompatible with the essence of chaos. 

A purely mathematical example illustrating this curious behaviour is provided by 
the 'quantum' function 

m 

Q ( t ) = h  mexp{-h2m2}sin{mhf) 
m F - m  

and its 'classical' limit, in which the sum is replaced by an integral, 

(16) 

(Despite superficial appearances, this is not a model for any kind of harmonic oscil- 
lator.) Both are odd functions of t, whose moments are easily calculated to be 

J;; m 

C ( t ) =  d x x  exp{-x2) sin{xt}=- t exp{-at2}. I-, 2 

Q r = O  (all r )  

showing the clash of limits. 
In this example the mysterious classical appearance of the moments can be traced 

explicitly, by re-expressing (15) with the aid of the Poisson sum formula: without 
approximation, we have 

Thus Q ( f )  is here a series of copies of C(r), displaced along the f axis by multiples 
of 2 ~ / h .  As h + O  all these copies recede to *m, leaving C ( t )  alone at finite 1. The 
moments are derivatives of the Fourier transform of Q ( t )  at zero frequency w. Each 
copy generates a phase-shifted reproduction of the transform of C ( f ) ,  whose sum 
involves 

exp{2niw/ h )  
1 -exp{Zqiw/h} = 1 + 2 R e  

= 1 - 1 = 0  (19) 

(we ignore the delta-function at w = 0 because this is negated by a zero of the transform 
of C(0 there). The -1  in (19) represents the contribution of all the copies to Q,, and 
cancels C,. 
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